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Abstract 

We use a simplified calculation to demonstrate the equivalence between three different methods for calculating 
transition line strengths. These calculations demonstrate the complex interplay between spin-orbit and correlation 
contributions to two-photon transitions in rare earth ions. 

1. Introduction 

In a previous paper we investigated many-body per- 
turbation theory calculations of two-photon transition 
intensities in Gd 3+ [1]. We found incompatibilities 
between the many-body formalism and the earlier cal- 
culations of Judd and Pooler [2] and Downer and co- 
workers [3] because the latter contain "unlinked'" dia- 
grams. Removal of these diagrams seemed to destroy 
the previous good agreement between theory and ex- 
periment. Agreement was restored, however, when 
"folded" third-order correlation diagrams involving the 
Coulomb interaction within the 4f 7 configuration were 
included. The question that remained unanswered was 
how these two apparently incompatible calculations 
could yield similar answers. 

More recently, we performed "direct" calculations 
for Eu 2+, in which the actual eigenstates of the 4f 7 
and 4f65d configurations were used [4]. That work 
clarified the interplay between Coulomb and spin-orbit 
contributions to two-photon transition intensities and 
provided a way to reconcile the different methods of 
calculation. 

It is the purpose of this paper to explicitly demonstrate 
this reconciliation. A key point is that the "folded" 
diagrams represent changes in energy from the con- 
figuration average. Thus, if we are only interested in 
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a restricted range of energy levels, we can use the 
"true" energies instead, in which case the Judd-Pooler 
calculations give correct results. To show this, we briefly 
review the Rayleigh-Schr6dinger perturbation theory. 
We then consider a simplified four-state system, showing 
the equivalences between direct, many-body pertur- 
bation, and Judd-Pooler type perturbation calculations. 

2. Perturbation theory 

The many-body perturbation theory approach used 
in ref. 1 is developed in detail in Chapters 9 and 13 
of the book by Lindgren and Morrison [5]. When the 
formalism is extended to include atom-photon inter- 
actions, the energy denominators are modified by the 
inclusion of photon energies [6], but the same diagrams 
occur. The calculations employ the concept of a "model 
space". Rather than solving for the eigenvalues and 
eigenstates of the full Hamiltonian, an "effective Ham- 
iltonian" is constructed and diagonalized within the 
model space, and the expectation values of "effective 
transition operators" are evaluated between the model- 
space eigenvectors. 

Initially, we use Rayleigh-Schr6dinger perturbation 
theory on the level of Chapter 9 of Lindgren and 
Morrison. If we only consider excited configurations of 
opposite parity to the ground configuration, the relevant 
second- and third-order equations for the two-photon 
absorption transition moments are 
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In these expressions, I, J and K are states within the 
model space (4f u) and S and T are states in an excited 
configuration (e.g. 4fN-15d) outside the model space. 
The perturbation, V, includes the spin-orbit and Cou- 
lomb interactions, r is the dipole moment operator, 
and ~o is the photon energy (fi=l).  If desired, eqn. 
(3), may be Hermitized by averaging with its conjugate. 
However, it should be noted that model-space calcu- 
lations are inherently non-Hermitian. 

When excited configurations having the same parity 
as the ground configuration are included, we have the 
two additional equations, 
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where the M are states in an excited configuration of 
the same parity as the ground configuration (e.g. 
4fN-15f). For the simplified calculations that follow, 
however, only a single excited configuration will be 
considered, and thus contributions from eqns. (4), (5) 
will not arise. 

The above equations will be used for each of the 
three calculations that follow. The fundamental dif- 
ferences between these calculations are not in the 
equations used, but rather in their differing definitions 
of the states [i) and energies Ei. For the direct cal- 
culation, eigenstates and eigenvalues of the complete 
Hamiltonian will be used, allowing only contributions 
from eqn. (1). In contrast, the maw-body calculation 
uses zero-order eigenstates, necessitating the use of all 
relevant equations. The Judd-Pooler type perturbation 
calculation uses the zero-order eigenstates within the 
excited configuration (like the many-body calculation) 
and uses exact eigenstates within the ground config- 
uration (like the direct calculation). Thus, Judd-Pooler 
type calculations omit eqn. (3), which has the pertur- 
bation V acting within the ground configuration. In the 
next section, we show that when careful attention is 
paid to these differences, all three calculations result 
in equivalent answers. 

3. Simpl i f ied calculat ion 

We consider a simplified system with four states, la), 
Ib), le) and [d). The model space consists of la} and 
]b), while Ic) and Id) are excited states. The Hamiltonian, 
H, is divided into a zero-order part, Ho, and a per- 
turbation, V, [000 01 [c ] 0 0 0 0 Z~ G, 0 O0 
H = H ° + V = o  0 A 0 + 0  0 Cc Z2 

0 0 0 A 0 0 Z2 Cd 

(6) 

where A is the zero-order energy difference between 
the excited and model spaces (the Hartree-Fock en- 
ergy). The Ci represent the non-spherical part of the 
Coulomb interaction, and the Zj represent the spin- 
orbit interaction. The effective Hamiltonian for the 
model space is 

ZI 

In the general case, there could be matrix elements 
of V (e.g. the odd-parity crystal field) connecting ]a) 
and [b) to ]c) and Id). In that case, eqn. (7) would be 
a first-order approximation to/-/err. 

If the Zj are small compared to the Ci, we can take 
the mixing to first order in the Zj and ignore the energy 
shift. This yields the following expressions for the fi') 
eigenstates of H: 

21 
la'> = la) + ]b) Co - Cb' 

Z1 
]b') = ]b) + ]a) Cb -Ca '  

Z2 
Ic'} = Ic) + Id) C~- c ;  

Za 
Id') --Id) + Ic) c d -  c~' 

G, = G  (8) 

G , = G  (9) 

E c , = a + G  (lO) 

G , = A + G  (11) 

The states ]a') and [b') are also the eigenstates of Hell. 
We take the one-photon interaction matrix to be 

OTI 0 T 1 0 ] 
M= 0 0 0 T2 

0 0 0 
T2 0 0 

(12) 

where the Tk represent dipole moments. Two-photon 
transitions between ]a') and [b') are "spin-forbidden", 
as they are allowed only due to the presence of the 
"spin-orbit" matrix elements, Zj, in the Hamiltonian. 
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3.1. Direct calculation 
In order to perform an "exact" or "direct" calculation 

of the two-photon transition moment for the "spin- 
forbidden" la') to [b') transition, we use exact eigen- 
states of H, rather than those of Ho. This makes the 
third-order terms superfluous, and only the second- 
order matrix elements of eqn. (1) must be evaluated. 

Rather than write out all possible terms, we present 
only those that are quadratic in T2 and linear in Z1. 
From eqn. (1), we obtain 

Zl 
Ca - (-A-~Ca) + w J k ~  ] (13) 

where the first fraction represents the second-order 
time dependent perturbation, and the second fraction 
gives the proportion of Ib) in ]a'). Expanding eqn. (13) 
in powers of 1 / ( -A  + w), we obtain 

( ) T2T2Z 1 1 + + • • • (14) 
C°-C~ -A+~o  (_~+to)2  

3.2. Many-body perturbation calculation 
The states in eqns. (1)-(3) represent configurational 

states, whereas many-body perturbation theory is ex- 
pressed in terms of orbitals. However, the correspond- 
ence between eqns. (1)-(3) and orbital expressions is 
exact (see Chapter 13 of refs. 5 and 7), and for the 
purposes of this discussion, we use eqns. (1)-(3) to 
demonstrate the results of a many-body calculation. 
Our calculation is based on Rayleigh-Schr6dinger per- 
turbation theory, so eigenvalues of Ho are used in the 
energy denominators. Furthermore, the states in eqns. 
(1)-(3) are the zero-order states (1i), not li')). In order 
to obtain the terms containing TzT2Z1, we place these 
"effective transition operators" between the eigenstates 
of Hen. This leads to the factors ZI/(C,- Cb) in some 
of the following expressions. From eqn. (1), we obtain 

--A+to 

Restricting V to the spin-orbit interaction in eqn. (2), 
we only obtain terms involving Z2. However, letting V 
contain the Coulomb interaction yields 

T2CaT2 ( Z1 ) (16) 

Equation (3) yields 

T~T2Z~ 
( - A + t o ) ( - A + t o )  

T2T2Z, (C.-Cb~ (17) 
= -  ( - a + t o ) ( - A + t o )  

and - ( - -A+ t o ) ( -A+ t o )  ~ (18) 

from the spin-orbit and Coulomb contributions, re- 
spectively. Adding these terms together, we obtain 

T2T2ZI ( 1 -~- Cd--(Ca--Cb)--Cb) (19) 
Co-C  - A + t o  ( - A + t o )  2 

which is the same as the "direct" calculation. Note the 
cancellation between eqns. (17) and (18), which arise 
from "spin-orbit" and "Coulomb" interactions, re- 
spectively. 

3.3. Judd-Pooler perturbation calculation 
The original Judd-Pooler [2] calculation does not 

include eqn. (3) and thus eqns. (17),(18) do not arise. 
However, the denominators now contain eigenvalues 
of He~, and eqn. (1) yields 

G Z ~ t o ] \ ~ ]  (20) 

Coulomb contributions within the excited configuration 
were considered to be small in the calculations of Judd 
and Pooler, and were therefore neglected. For com- 
pleteness, however, we include them here. Thus, from 
eqn. (2), we obtain 

(ca  - A + o )(co - + to) (21) 

Adding these terms together and expanding in powers 
of 1/( - A + to), we obtain 

T2TzZI (1  Cd--Ca ) 
- ( - A + 2 Ca - Cb A +--------w + + ' ' "  (22) 

which is the same as the results of the direct calculation 
(eqn. (14)) and the many-body perturbation calculation 
(eqn. (19)). We have emphasized terms containing 
TzTzZ1, in order to display expressions arising from 
eqn. (3). In general, when terms involving any com- 
bination of matrix elements are evaluated, with per- 
turbation expansions carried out to nth order, agreement 
is exact through the n -  1 order of 1 / ( -  A + to). Thus, 
to achieve agreement between these three calculations 
in the third order of 1 / ( -  h + to), it would be necessary 
to consider fourth-order perturbation terms. 

In essence, as explained in ref. [4], the Judd-Pooler 
calculation has moved the part of V that acts within 
the model space into Ho. This means that the matrix 
element (J[l~I) of eqn. (3) is equal to zero, since there 
is no longer any V separate from Ho acting within the 
model space. The Judd-Pooler calculation is therefore 
correct, but it must be realized that different energy 
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denominators should be used for transitions between 
different energy levels. 

In Judd-Pooler-type calculations (eqn. (20)), terms 
containing the Coulomb matrix elements, G, arise from 
using eigenvalues of H~fr, which includes effects of the 
Coulomb interaction. In many-body perturbation cal- 
culations, by contrast, they arise only from perturbation 
expressions containing the Coulomb interaction ex- 
plicitly. Therefore, the classification of contributions as 
"spin-orbit" or "correlation" depends, in part, upon 
the method of calculation. 

],. 
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s 

/? 
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t 

s 

4. Many-body perturbation theory for Gd 3+ 

For the Gd 3+ calculation discussed in ref. 1, the 
states in eqns. (1)-(5) represent states in the 4f 7 and 
4f65d configurations. Many-body perturbation theory, 
however, is expressed in terms of orbitals. The trans- 
formation from eqns. (1)-(5) to expressions corre- 
sponding to the diagrams evaluated in ref. 1 is explained 
by Lindgren and Morrison [5, Chapter 13]; see also 
[7]. 

Ignoring diagrams involving core excitations, we have 
only one second-order diagram and four third-order 
diagrams involving the spin-orbit interaction, Vso, and 
the dipole moment, r. These are shown in Fig. 1(a-c, 
e-f), and have corresponding algebraic expressions 
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--a~ai~j s (klr]s)(slrlj)(JlG°li) 
(E , -  Es + + o,) 

a~a iZ  (k[rls)(slr[m)(m[Vs°[i) 

ms (E,-- Es + Em) 
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(23) 

(24) 

(25) 

(26) 

(27) 

In these expressions, i , j  and k label valence (4f) orbitals 
in our 4f 7 model space, s and t label virtual orbitals 
outside the model space (5d), and the E are orbital 
energies. Each term contains a product of a creation 
operator and an annihilation operator for 4f orbitals. 
The diagram corresponding to eqn. (25) (Fig. l(c)) is 
commonly referred to as "folded" [5]. 

Equation (23) arises directly from eqn. (1). Equation 
(24) arises from eqn. (2), where the spin-orbit interaction 
and the dipole moments act on the same electron. 
"Unlinked" expressions (Fig. l(d)), where the dipole 
moments and the spin-orbit operator act on different 
electrons, arise from both eqn. (2) and eqn. (3) and 
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(f) 
Fig. 1. Second and third-order one-electron two-photon absorption 
diagrams. For details of notation see ref. [5]. A single up-going 
arrow represents a virtual orbital, a double arrow a valence 
orbital. Folded valence lines have a circle around their arrows. 
Photons are represented by wavy lines and the spin-orbit inter- 
action by a triangle. Diagrams (a), (b), (c), (e) and (f') correspond 
to eqns. (23)-(27) of the text, respectively. Diagram (c) is folded, 
diagram (d) is unlinked. 

cancel. This leaves us with the "folded" diagram (Fig. 
l(c), eqn. (25)) which arises from eqn. (3) when the 
dipole moments and spin-orbit operator act on the 
same electron. 

It is important not to confuse "folded" diagrams with 
"core excitations". The folding is merely a device to 
preserve the rules for calculating the denominators [5] 
(especially pp. 304-305). In Fig. l(c), for example, an 
electron is excited from state i to j to s to k, and the 
diagram does not imply that there is initially an electron 
in state j, as is clear from the operator ordering of 
eqn.(25). 

Equations (26) and (27) arise from eqns. (4) and 
(5). These have been overlooked in earlier work [1-3]. 
Their possible importance has been recently demon- 
strated by Smentek-Mielczarek [8]. 
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Fig. 2. Some third-order two-electron two-photon absorption 
diagrams. Notation is the same as Fig. 1. The Coulomb interaction 
is represented by a dotted line. Folded diagram (e) dominates 
the correlation calculation of ref. [1]. 

Some third-order "correlation" diagrams involving 
the Coulomb interaction are shown in Fig. 2. The folded 
diagram, Fig. 2(e), arises from eqn. (3), when V is the 
Coulomb interaction. It gives a large contribution in 
the calculations of ref. 1, since it represents pertur- 
bations to the energy-levels of the f7 configuration caused 
by the Coulomb interaction. An analogous term in our 
simplified calculation is eqn. (18). As in our simplified 
calculation, it is possible to take these effects into 
account implicitly by using the exact energy levels. Thus, 
the agreement between the calculation of ref. 1 and 
the calculation of Judd and Pooler [2] (in which the 
correlation effects are absorbed into the denominators) 
is not merely fortuitous, but is a result of doing the 
same calculation in different ways. 

5. Conclusion 

Careful application of three different calculation 
methods (direct [4], many-body perturbation [1], and 

Judd-Pooler [2,3] type perturbation calculations) yields 
identical results. Thus, each of these three methods 
may legitimately be used in the calculation of transition 
line strengths. 

The Judd-Pooler [2] calculation, while valid, is not 
compatible with Lindgren and Morrison's [5] formu- 
lation of many-body perturbation theory. This is because 
the Judd-Pooler zero-order Hamiltonian, Ho, is different 
when acting upon ground configuration states than when 
acting upon states of the excited configuration, thus 
destroying the cancellation of unlinked diagrams nec- 
essary for the many-body perturbation theory. In con- 
trast, the direct calculations used in ref. [4] and illus- 
trated here are compatible with MBPT, as long as we 
define the model space to include both the 4fNand the 
4fN-15d configurations. In that case, it is possible to 
add contributions from other excited configurations or 
from other potential terms, using the techniques of 
MBPT. In fact, we feel that this will be a most profitable 
direction for future calculations, particularly for ex- 
amination of transition intensities for divalent lan- 
thanides, where both the Judd-Pooler formalism [3] 
and the more straightforward MBPT calculations, using 
4f N as the model space, have been shown to be in- 
sufficient [4]. 
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